Aircraft Design

Code	Credit Hours
AE-451	2-2

Prerequisites

- Aerospace vehicle Performance
- Stability and Control
- Propulsion and Power plants

Course Description

This course deals with the conceptual design of various types and categories of aircraft. Conceptual design is basically the new aircraft concept development process and consists of two major activities: design layout and design analysis. These two phases broadly cover aspects of configuration layout, payload considerations, aerodynamics, propulsion, structures and loads, weights, stability and control, performance and tradeoff studies. As part of this course, the student is required to prepare and present a conceptual design of a complete aircraft based on certain specifications. Extensive use of computers would be made to refine the designed aircraft. The students are encouraged to use software like AAA / RDS / DATCOM / XFLR / PANAIR / ADS / OpenVSP / Matlab / CATIA / Solid edge / Solid works / Pro-Engg PTC Creo/ Sketchup / Inventor / NX etc and explore other online available software for design, evaluation, CAD modeling and optimization of the designs.

Text Book (S):

Textbook:

- 1. "Aircraft Design: A Conceptual Approach" by Raymer, AIAA Education Series, Latest Available Edition, ISBN 978-1-62410-490-9, 2018.
- 2. Maintenance Practices by Aviation Maintenance Technician Certification Series, Latest Available Edition
- 3. TURBINE AEROPLANE STRUCTURES AND SYSTEMS by Aviation Maintenance Technician Certification Series, Latest Available Edition
- 4. Aircraft Aerodynamics, Structure and Systems by Aviation Maintenance Technician Certification Series, Latest Available Edition

Reference Material:

- 1. "Aircraft Design A Systems Engineering Approach" by Mohammad H. Sadraey, Wiley, ISBN 978-1-119-95340-1, 2013.
- "Fundamentals of Aircraft and Airship Design, Volume 1 : Aircraft Design" byLeland M Nicolai, AIAA Education Series, ISBN 978-1-60086-751-4, 2010
- 3. "Aircraft Design" by Ajoy Kumar Kundu, Cambridge Aerospace Series, ISBN 978-0-521-88516-4, 2010.
- "Designing Unmanned Aircraft Systems : A Comprehensive Approach" by JayGundloch, AIAA Education Series, 2nd Edition, ISBN (print): 978-1-62410-261-5, 2014.

ASSESSMENT SYSTEM:

Quizzes	10%
Assignments	10%
Mid Terms	30%
ESE	50%

Lab Part		
Assignments	60 %	
Design Presentation (Final Lab + Project)	40%	

In order to increase the weightage of final presentations, some assignments' weightage may be shifted to Design presentation

Teaching Plan

Theory

LecNo	Description	Ref
1	Introduction Conceptual design of various types and categories of aerospace vehicle	Text-1 Ch1,2
2-3	Rough weight sizing of aircraft Airfoil and Wing/Tail geometry selection	Text-1 Ch 3 3.2,3.3,3.4,3.5, 3.6 Reference-1 Ch-3 3.1,3.2,3.3

4-6	Airfoil selection CI Calculation Stall Characteristicst/c selection	
	Wing Geometry AR calculation Sweep selection	
	Taper Ratio selection	
	Dihedral selection	Ch4
	Wing Tip selection	Ont
	•	
	Wing vertical location selection Tail configuration selection	
	Tail Geometry (AR and Taper Ratio)	
	Thrust-to-weight Ratio (T/W) and wingloading (W/S)	
	T/W calculation according to aircraft type Thrust	Text-1 Ch 5
7-8	Matching according to mission profileW/S calculation	
	according to mission profile Selection of T/W and W/S	5.1,5.2,5.3
		,,
	Initial Sizing (Refined weight sizing)	
	Rubber and Fixed Engine sizing	
		Text-1 Ch 6
	Fuel weight estimation according to missionprofile	
0.40	GTOW calculation through iterations (MATLABor any	6.1,6.2,6.3,6.5
9-13	other suitable Software)	
	Geometry SizingFuselage Wing	
	Tail volume coefficientControl surface sizing	
	Configuration / Design layout and lofting	
	Conic lofting	
	Conic fuselage developmentButtock	Text-1 Ch 7
	plane cuts	
14-15	Wing Layout calculationFillets	Reference-1
	Winglets	Ch-7
	Wetted area determinationTail	
	layout calculation	
	Volume determination	
16	Special considerations in configuration	Text-1 Ch 8,9
17	layout	Text-1 Ch 10
	Aerodynamics considerations Area Ruling	10.3,10.4,10.5
	Sear-Hacks Structural considerations Radar Detectability	10.0, 10.4, 10.0
	Aural Signature	
	Crew Station, Passengers and Payload considerations	
	Cabin management Gun Installation	
	Bombs/missile station considerations	
18-19	Propulsion and fuel system integration	
	Engine dimension estimation Inlet geometry	
	Inlet locations	Reference-1
	Capture area calculations BL Diverter	Ch-8
	Propeller sizing Propeller location Fuel system	
	Electrical system	
	·	

	Landing gears and subsystems	
	LG arrangements Tire sizing	Text-1 Ch 11
20	Shock absorbers	
20	LG Retraction geometry	Reference-1
	LG Reliacion geometry	Ch-9
	Design Analysis: Aerodynamics	011-3
	Coefficients' determination CD	
	CLa	
	Supersonic lift curve slope CLmax	
	CDo determination	
	Parasite drag determination (Fig 12.34) K- calculation	Text-1 Ch 12
21-23	Ground effects	12.1,12.2,12.3
	Introduction of CFD in determination of drag and lift	12.4,12.5,12.6
	characteristics	12.1,12.0,12.0
	XFLRv5 will be used for determination of Airfoil, Aircraft drag	
	estimation	
	Design Analysis: Propulsion	
	Rubber Engine SizingFixed	
24-25	Engine Sizing Intake Design	Text-1 Ch 13
	Propeller Design	
	Design Analysis: Structures and loads	
	Load categories Structure	
	fundamentalsMaterial selection	
	Truss analysis (Method of joints)Method of	
	shears	
	V-n diagram	
	Gust V-n diagram	
26-27	Weights analysis Memont Balance Methodology for	Text-1 Ch 14
20-21	Moment Balance Methodology for	1 UL 1 UL 14
	determination of aircraft CG Concept of CG envelope	
	Aircraft statistical weight method	
	2 Hour Lecture may be arranged as invited guest speaker	
	from Structures Group coveringabove topics	

28-29	Stability, control and handling qualities Introduction Coordinate system and definitions Longitudinal static stability calculationsLongitudinal control calculations Flap effectiveness Downwash and up-wash Thrust effect on longitudinal stabilityTrim Analysis Lateral and directional stability and controlparameters calculations	Text-1 Ch 16 16.1,16.2,16.3 Ref-1 Ch-6 Ref-1 Ch-12
30	Performance estimation and flightmechanics Steady level flight Drag Polar plot Range calculations	Ch 17
31	Endurance CalculationsPs plots Flight envelope Take off distance calculation Landing distance calculations	
32	Sizing & Trade Studies Sizing MatrixCarpet Plot	Ch 19
33	Optimization	Ch 19
	End Semester Exam	

Lab Work

Lab No	Description	Ref	Lab Report
1	Selection of reference aircraft	Ch1,2	
2-3	Defining Mission profile and Rough weightsizing of aircraft	Ch 3	
4-5	Airfoil and geometry selection	Ch4	
6-8	Calculation of T/W and W/S for differentmission segments	Ch 5	1
9	Rubber engine sizing	Ch 6	
10	Initial sizing of aircraft using the parametersselected and wing and thrust loading	Ch 6	

11-12	Lab Assignment preparation	Ch 6	
	(Design Report-1 Submission 15% of La	ab Part)	1
13-14	Selection of Configuration layout and Payload management. payload positioning, cockpit and crew station layout propulsion and fuel system integration, landing gears and subsystem selection. Drawing of Aircraft and lofting of sketch	Ch 7, 8, 9	1
15	Appropriate selection for Propulsion and fuel systems and their integration with aircraft. Intake design.	Ch 10	_
16	Selection of Landing gears and subsystems	Ch 11	
17-20	Aerodynamic analysis including plots of CLa, CLmax,CD0,K, CDI with varying Mach Nos.	Ch 12	
21-23	Propulsion system analysis including plots of Uninstalled thrust, installed thrust, Inlet drag and Net propulsive power versus Mach No at various altitudes V-n diagram of aircraft with and without gust loads and estimation of maximum speed. weight estimation using Approximate group and Statistical group methods and comparison of the results of the two methods with each other and with previous results of crude estimation. Calculation of resulting fuel weight and to see if the fuel weight is sufficient to carry out the design mission	Ch 13 Ch 14, 15	
24-26	Static stability analysis in pitch, roll and yaw modes. Calculation of contribution of various components (wing, fuselage, tail etc.) towards longitudinal stability and plots of Cmcg vs AoA plots. Plot of Cmcg vs CL and estimation of Clbeta and Cnbeta.	Ch 16	
	Design Report -2 Submission 15% of Lab Pa	art	

27-29	Estimation of all required parameters for	Ch 17	1	
	Performance analysis. Thrust available vs			
	Thrust required plot. Evaluation of range,			
	endurance, climb rate, T/W for climb, time to			
	climb and fuel consumed in climb,			
	instantaneous and sustained turn rate ofaircraft. Ps vs			
	M plots at different load factors,			
	Ps vs Height at different load factors,			
	Trajectory of minimum time to climb and			
	complete operating envelope of your design			
	with all limits clearly shown. Take off and			
	landing performance analysis of design			
	Making of sizing matrix for the design for at least 9			
30	different settings of W/S and T/W. Making of sizing	Ch 19		
	matrix cross plot and			
	identification of optimum design point.			
31	Using sizing matrix to make carpet plot of design	Ch 19		
Submission of Design Report-3 as part of Complete Design Report (30% of lab part)				
			1	
	Final Design Presentation (40 % of lab p	art)		

Lab Rubrics (Design Report-1)

Chapter	Requirements	Max	Values
		Marks	1
			page
			No
Ch 3	Hand Sketch	25	
Sizingfrom	Proposed Mission Profile (Demonstrate design characteristics)	25	
а	Rough weight sizing according to mission profile	50	
Conceptual			
Ch 4	Aerofoil selection	25	
Aerofoil			
and Wing/	Wing and tail geometric parameters (CLdesign, CLmax,	75	
Tail	Mdesign, Stall, AR, Taper ratio, twist, incidence angle, dihedral,		
Geometry	vertical locations, tip shape		
Selection	etc)		
5 T/W and	Calculate T/W for mission segments (write code as well)	25	
W/S	Calculate W/S for mission segments (Write code as well)	35	
	Selection of design values of T/W and W/S	40	
Design	Introduction of innovative design concepts and highlighting their		
-			
General	significance		
		25	
	Good drawing with labelling	25	
	Presentation Analysis and discussion	25 25 25	

(15% of lab part)

Chapter	Requirem	Max	Value
	ents	Mark	s /
		S	page
		-	No
	Empty Wt Fraction	10	
	Fuel Wt Fractions	10	
	T/O gross Wt Iterations	10	
	Comparison with Rough Wt Sizing	10	
Ch 6 Initial	Comments on results	10	
Sizing	Engine sizing	10	
	Fuselage Geometry (Length, fineness ration, diameter,	10	
	account forpassengers, crew, engines, payload, moment		
	arm for control)		
	Revisit Wing Geometry (with new Wo, W/S and T/W info)	10	
	Revisit Tail geometry (AR, Vol Coeff, Moment Arm)	10	
	Control Surface Sizing (Ailerons, Elevators, Rudder etc)	10	
Ch 7	Lofted drawing of fuselage (space for crew, payload,	25	
Configuratio	passengers, luggage, landing gears, fuel system, engine		
n	etc)		
layout and	Lofting of wing (AR, TR, Sweep, Dihedral, Thickness,	25	
lofting	Cords etc)		
	Lofting of tail / canards (tips, space for fuel, LG,	25	
	fillets, Wetted area,		
	Proper positioning of wing / tail over fuselage (location	25	
	of MAC wrt CG		
Ch 8	Aerodynamic Considerations	35	
Special	Structural Considerations	35	
consideratio	Other considerations (Stealth, Maintainability)	30	
n inconfig			
layout			
Ch 9 Crew	Crew station (Space, outside visibility)	25	
station,	Internal P/L / passengers / Cargo layout	25	
passenger	External P/L (Weapon carriage, launch, gun)	25	
&Payload	Good CAD model / drawing with these features	25	
	Engine Selection (justification)	10	
	Engine sizing (Scale Factor, Geometry, wt, Thrust,	20	
Ch 10	BPR, SFC – max &Cruise, accessories etc)		
Propulsion	Engine inlet geometry	20	
sysselection	Engine inlet location	10	
5,000,000	Engine Capture area (Subsonic, supersonic)	20	
	BL Diverters	10	
	Fuel tank selection (location, type etc)	10	
Ch 11 LG	Landing gear type and configuration	50	

Lab Rubrics (Design Report-2)

andSub- systems	Tire and shock absorber sizing	50
	Lift Curve Slope (Supersonic, subsonic), fuselage lift factor, Cla Vs Machnumber	15
	Max Lift – clean (effects of AR, Sweep) Clmax Vs Mach No	10
Ch 12 Aerodynami	AOA for Max Lift	5
	Change in Max Lift due HLD (Flaps, LEX, slots, slats, flap area)	5
canalysis	Change in zero lift AOA with HLDs	5
	Parasite Drag (Eq skin friction method & component build-up method, Cfc, FFc, Qc, Cdmisc, Cdl&p, Wave D)	10
	Comparison of two methods for Parasite Drag	5
	Plot of Parasite drag vs Mach No	10
	Induced Drag – lift (Oswald Efficiency method & LE Suction method)	10
	Comparison of two methods	5
	Plot of induced drag Vs Mach No	10
	Plot of Complete Drag Vs Mach No	10
Ch 13	Uninstalled thrust Vs M No	20
Propulsion analysis	Installed Thrust Calculations (Inlet pressure recovery, bleed air) Vs Mach	40
	Installed Propulsive Force (Inlet drag, Nozzle drag, Trim Drag) Vs Mach	40
Ch 14 Structures andloads	Separate Vn diagrams for high g manoeuvre and gust loads withlabelling of important curves and parameters (max +, - load, dive speed,	50
	Combines Vn Diagram	30
	Discuss various aspects of V-n diagram and behaviour of your design	20
	Approximate Group Weight Method (Gp Wt Statement)	20
Ch 15 Weight	Statistical Group Weight Method (Gp Wt Statement)	20
Analysis	Comparison among the two methods as well as previous crude	20
	Calculate resulting fuel weight	20
	Comment if the fuel weight is sufficient to carry out the design mission	20
	Contribution of wing to stability	15
Ch 16 Stability Analysis	Contribution of tail to stability	15
	Contribution of engine to stability	15
	Location of Neutral point and static margin Vs Mach No	15
	Plot Cmcg Vs CL for various trim settings	15
	Calculate CIB and CnB	15

Comments in stability of your design	10	
Formatting	25	

General	Presentation	25	
	Analysis and discussion	25	
	Good drawing with labelling	25	

(15% of lab part)

Lab Rubrics (Design Report-3)

Chapter	Requirements	Max Marks	Value s / page No
	Present Thrust available vs Thrust required plot.	10	
Ch 17 Performance and Flt Mech	Evaluate range, endurance, climb rate, T/W for climb, time to climb and fuel consumed in climb, instantaneous and sustained turn rate	35	
	Present Ps vs M plots at different load factors, Ps vs Height at different load factors, Trajectory of minimum time to climb and complete operating envelope of your design with all limits clearly shown	35	
	Carry out complete take off and landing performance analysis of yourdesign.	10	
	Comment on performance of your design viz-a-viz the design requirements	10	
Ch 19 Sizing	Make sizing matrix for your design for at least 9 different settings of W/Sand T/W	10	
and Trade Studies	Make sizing matrix cross plot and identify the optimum design point.	35	
	Use same sizing matrix to make carpet plot for your design.	35	
	Analyse your results and discuss the findings	20	
	Formatting	25	
General	Presentation	25	
	Analysis and discussion	25	
(450) - (1-1	Good drawing with labelling	25	

(15% of lab part)

*Note: The course has 0-2 credit hours as lab part allowing the students ample time to apply the knowledge imparted during lectures into their designs. The lab wise breakdown provides requirements as well as guidelines to the students to complete their design in discrete steps. The lab work of aerospace vehicle design falls under the C-6 cognitive domain unlike other lab courses where the lab work usually falls under the psychomotor domain. The lab assessments may be considered as Complex Engineering Problem instead of Open-Ended Labs as the students are designing an aircraft with complex engineering requirements and no lab equipment is required for this course.